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Viscous effects on transient
long-wave propagation
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(Received 26 April 2004 and in revised form 30 August 2004)

Using a perturbation approach and the Boussinesq approximation, we derive sets of
depth-integrated continuity and momentum equations for transient long-wave pro-
pagation with viscous effects included. The fluid motion is assumed to be essentially
irrotational, except in the bottom boundary layer. The resulting governing equations
are differential–integral equations in terms of the depth-averaged horizontal velocity
(or velocity evaluated at certain depth) and the free-surface displacement, in which
the viscous terms are represented by convolution integrals. We show that the present
theory recovers the well-known approximate damping rates for simple harmonic
progressive waves and for a solitary wave. The relationship between the bottom stress
and the depth-averaged velocity is discussed.

1. Introduction
In recent years, several phase-resolving and depth-integrated Boussinesq-type

equations have been developed to simulate water-wave propagation from intermediate
water depth to the surf zone (e.g. Liu 1994). These phase-resolving equations have been
proposed as the ‘wave driver’ for calculating sediment-bedload transport fluxes and, in
turn, morphological changes. Therefore, it is essential to have an accurate estimation
of the bottom shear stress based on the calculated wave field above the bed. To include
the viscous effects of the bottom boundary layer, traditionally a bottom-shear-stress
term is added to the depth-integrated momentum equations and the bottom shear
stress is then modelled as a function of the horizontal irrotational velocity on the
bottom (also called the free-stream velocity herein) with an empirical coefficient. The
simplest bottom-shear-stress model assumes that it is linearly proportional to the free-
stream velocity. Thus, the shear stress is in phase with the free-stream velocity and
has no memory of the history of the spatial variation of the free-stream velocity.
It is well known that for a laminar boundary layer the phase difference between
the bottom shear stress and the free-stream velocity is π/4 (see e.g. Mei 1983). This
simple approach is inadequate for producing useful information on bottom shear
stress under transient waves.

Byatt-Smith (1971) made an attempt to include the laminar viscous effects by
obtaining the analytical solution for the rotational velocity in the linearized transient
bottom boundary layer. Based on this analytical solution, Byatt-Smith obtained the
bottom shear stress as a convolution integral in terms of the time derivative of
the free-stream velocity, which was then included in the depth-averaged momentum
equation. Byatt-Smith’s formulation, which revealed the phase relation between the
bottom shear stress and the free-stream velocity, is an improvement of the traditional
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approach mentioned above. However, the formulation is not rigorous enough in the
sense that the order of accuracy of the governing equations used is not clear.

In this paper, we adopt and extend the perturbation approach outlined in Mei &
Liu (1973) and Liu & Earickson (1983) to include the effects of a bottom boundary
layer on the transient long-wave propagation. For simplicity, we have assumed that
the viscosity is a constant. Therefore, the boundary layer is either laminar or turbulent
with a constant eddy viscosity. It has been shown, in both theory and experiments, that
the eddy viscosity is a constant in an oscillatory turbulent boundary layer when the
bottom roughness is relatively large (van Doorn 1983; Nielsen 1992). Denoting ε as
the parameter representing the magnitude of nonlinearity, µ2 the frequency dispersion,
and α the viscous effect, the Boussinesq approximation and the assumption that the
viscous effects are slightly weaker, i.e. O(ε) ∼ O(µ2) and O(α) ∼ O(ε2) ∼ O(µ4), are
employed to derive a set of phase-resolving and depth-integrated continuity equation
and a momentum equation. The effects of the bottom boundary layer are included
through the vertical rotational velocity induced in the boundary layer. As explained in
Mei & Liu (1973), the vertical velocity, working against the dynamic pressure, provides
a mechanism for the transference of energy from the core region to the boundary
layer. In the resulting governing equations, the viscous effects are represented by
convolution integrals. Therefore, the viscous effects have a memory of the history of
the spatial variation of the free-stream velocity. These equations are new and can
be used to study various wave propagation problems in which the viscous effects
might be significant. Finally, we present a formula for evaluating the leading-order
bed stress in terms of the time history of the free-stream velocity.

As an illustration of the capability of the present formulation, we shall show that
when the viscous effects are much weaker than the assumption proposed here, i.e.
O(α) � O(εµ2), an additional perturbation expansion can be employed to find the
evolution equation of the amplitude of the solitary wave due to viscous damping. The
simplified analytical solution is the same as that found in Keulegan (1948) and Mei
(1983). This implies that the new wave equations allow a more significant impact of
the viscous boundary layer by including the higher-order terms.

2. Governing equations and boundary conditions
Consider a wave train with surface displacement ζ ′(x ′, y ′, t ′) propagating in water

of constant depth, h′. The wave train is characterized by a typical wave amplitude,
a′

0, a horizontal length scale, l′
o, which is related to the magnitude of wavelength, and

the time scale, l′
o/

√
gh′. The following dimensionless variables are introduced:

(x, y) = (x ′, y ′)/l′
o, z = z′/h′, t =

√
gh′t ′/l′

o,

ζ = ζ ′/a′
0, p = p′/ρga′

0,

(u, v) = (u′, v′)/ε
√

gh′, w = µw′/ε
√

gh′,


 (2.1)

in which p′ denotes the pressure, (u′, v′) the horizontal velocity components in
the (x ′, y ′)-directions, w′ the vertical velocity component in the z′-direction, ρ the
fluid density, and g the gravitational acceleration. Two dimensionless parameters are
introduced in (2.1):

ε = a′
0/h′, µ = h′/l′

o. (2.2)

The dimensionless governing equations can be expressed as

µ2∇ · u +
∂w

∂z
= 0, (2.3)



Viscous effects on transient long-wave propagation 85

∂u
∂t

+ εu · ∇u +
ε

µ2
w

∂u
∂z

= −∇p + α2

[
∇2u +

1

µ2

∂2u
∂z2

]
, (2.4)

ε
∂w

∂t
+ ε2u · ∇w +

ε2

µ2
w

∂w

∂z
= −ε

∂p

∂z
− 1 + εα2

[
∇2w +

1

µ2

∂2w

∂z2

]
, (2.5)

in which

α2 =
ν

l′
o

√
gh′ , (2.6)

with ν the constant eddy viscosity, which can be viewed as the inverse of
Reynolds number. Note that in the following analysis the Boussinesq approximation,
O(ε) ∼ O(µ2), will be employed for weakly nonlinear and weakly dispersive waves.
Also, we shall also require that O(α) ∼ O(ε2) ∼ O(µ4), which can be fulfilled in the
following typical scenario. Consider a case where O(ε) ∼ O(µ2) ∼ 0.1: if the water
depth (h′) is 1 m and the eddy viscosity is 10−3 m2 s−1 (which is about 1000 times the
kinematic viscosity of water), the value of α is roughly 0.01, which is approximately
the same as O(ε2).

The dynamics of the flow problem can be presented in the following manner. The
flow motions are essentially irrotational except in the boundary layers adjacent to the
free surface, z = εζ , and the bottom, z = −1. It is well-known that in order to satisfy
the no-slip boundary condition on the bottom, the leading order of magnitude of the
horizontal rotational velocity component inside the bottom boundary layer is O(1),
while the horizontal rotational velocity component inside the free-surface boundary
layer is weaker, O(α), since only the zero shear stress condition on the free surface
is required (e.g. Mei & Liu 1973). From the continuity equation, a vertical velocity
component of O(α) is generated inside the bottom boundary layer, which persists
outside the boundary layer. Therefore, the irrotational flow in the core region must
be corrected at order α.

Accordingly, we now introduce the following perturbation expansions:

u = ∇Φ(x, z, t) + ur
0(x, z, t) + αur

1(x, z, t) + · · · , (2.7)

w =
∂Φ

∂z
+ αµwr

1 + · · . (2.8)

The velocity potential Φ has been introduced for the irrotational flow in the core
region. Both the velocity potential and the rotational velocity components are further
expanded in terms of ε and µ2 in the following sections. The perturbation expansions
are up to O(α).

2.1. Bottom boundary layer analysis

In this section, we shall focus on the flow inside the bottom boundary layer. Since
the boundary layer thickness is of O(α), we introduce the stretched coordinate

η =
z + 1

(α/µ)
. (2.9)

The leading-order continuity equation for the rotational velocity in the bottom
boundary layer becomes

∇ · ur
0 +

∂wr
1

∂η
= 0. (2.10)
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The leading-order momentum equations can be expressed as

∂ur
0

∂t
+ ε

[
ur

0 · ∇ur
0 + wr

1

∂ur
0

∂η

]
=

∂2ur
0

∂η2
. (2.11)

The dynamic pressure is an invariant across the boundary layer, i.e. ∂p/∂z = 0, to the
leading order.

The no-slip conditions on the bottom require that the rotational velocity satisfies
the following boundary conditions:

ur
0 = −∇Φ,

∂Φ

∂z
= −αµwr

1, η = 0. (2.12)

At the outer edge of the boundary layer, η → ∞, the horizontal rotational velocity
components vanish,

ur
0, wr

1 → 0, η → ∞. (2.13)

To find the leading-order solution for ur
0, subject to the boundary condition (2.12),

the boundary layer equation (2.11) is first linearized:

∂ur
0

∂t
=

∂2ur
0

∂η2
. (2.14)

The analytical solution for the two-point boundary-value problem is (Mei 1995)

ur
0(x, η, t) = − η√

4π

∫ t

0

∇Φ(x, z = −1, T )√
(t − T )3

e−η2/4(t−T ) dT . (2.15)

From the continuity equation, (2.10), the vertical rotational velocity component can
be obtained by integration,

wr
1(x, η, t) = −

∫ ∞

η

dη
η

2
√

π

∫ t

0

∇2Φ(x, z = −1, T )√
(t − T )3

e−η2/4(t−T ) dT . (2.16)

On the bottom, η = 0, the vertical rotational velocity takes the following form:

wr
1 = − 1√

π

∫ t

0

∇2Φ(x, z = −1, T )√
(t − T )

dT . (2.17)

The existence of this vertical boundary-layer velocity requires a correction to the
irrotational core-region flow so that the no-flux condition at the bottom is satisfied
up to O(α), i.e. (2.12). If the nonlinearity is considered in the boundary layer solutions,
an O(ε) horizontal rotational velocity will be added to the boundary-layer solution,
(2.15). Through the continuity equation this additional horizontal rotational velocity
will generate O(αµε) vertical rotational velocity in the boundary layer, which in
turn requires an additional correction to the irrotational core-region flow at O(αµε).
However, since O(αµε) ∼ O(µ7), this effect is not considered in the core-region flow
analysis.

2.2. Irrotational flows in the core region

Now we shall turn our attention to the irrotational flows in the core region. In terms
of the velocity potential as defined in (2.8), the continuity equation can be expressed
as

µ2∇2Φ +
∂2Φ

∂z2
= 0, −1 < z < εζ. (2.18)
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The dynamic and kinematic free-surface boundary conditions require

µ2

(
∂Φ

∂t
+ ζ

)
+

1

2
ε

[
µ2|∇Φ|2 +

(
∂Φ

∂z

)2
]

= 0, z = εζ, (2.19)

µ2

[
∂ζ

∂t
+ ε∇Φ · ∇ζ

]
=

∂Φ

∂z
, z = εζ, (2.20)

in which the atmospheric pressure has been assumed to be a constant. The bottom
boundary condition for the irrotational flow is the no-flux condition as given in (2.12).
Substituting (2.17) into (2.12) yields, up to O(α),

∂Φ

∂z
=

αµ√
π

∫ t

0

∇2Φ(x, z, T )√
(t − T )

dT , z = −1. (2.21)

Through the boundary-layer development the above bottom boundary condition
provides a mechanism for including the viscous effect in the core-region flow. Because
of the diffusion process in the boundary layer, the influence of viscosity is not
instantaneous. In (2.21), the integrand is weighted by (t − T )−1/2. Therefore, the
effects of the boundary layer are cumulative, but are weighted in favour of the
current time, T = t .

3. Boussinesq equations
In this section, we shall present the simplified governing equations for the irro-

tational flow by adopting the Boussinesq approximation, i.e. O(ε) ∼ O(µ2). Moreover,
we have further assumed that O(α) ∼ O(µ4). The primary difference between the
traditional Boussinesq equations and the present situation is that, in the traditional
Boussinesq equations, the vertical velocity at the bottom is zero, while the present
situation is not. On the other hand, in tsunami research, the bottom deformation
due to an earthquake is often prescribed, and hence the vertical velocity is also given
(e.g. Liu & Earickson 1983). Following Liu & Earickson’s approach, we expand the
potential function as a power series in the vertical coordinate,

Φ(x, z, t) =

∞∑
n=0

(z + 1)nφn(x, t). (3.1)

Substituting the expansion into the Laplace equation, (2.18), and the bottom boundary
condition, (2.21), we obtain the following recursive relation:

φn+2 =
−µ2∇2φn

(n + 1)(n + 2)
, n = 0, 1, 2, . . . , (3.2)

with

φ1 =
αµ√

π

∫ t

0

∇2φ0(x, T )√
(t − T )

dT . (3.3)

In the traditional Boussinesq equations φ1 vanishes, as do all the φn with odd n.
Thus, using the recursive relation in the expansion, we obtain the potential function
truncated up to O(µ5):

Φ = φ0 + (z + 1)φ1 − µ2

2
(z + 1)2∇2φ0 +

µ4

24
(z + 1)4∇2∇2φ0 + O(µ6). (3.4)
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Defining the bottom horizontal velocity and the total depth as

ub = ∇φ0, H = 1 + εζ, (3.5)

the kinematic free-surface boundary condition, (2.20), becomes

1

ε

∂H

∂t
+ ∇ · (H ub) − µ2

6
∇2(∇ · ub) − 1

µ2
φ1 = O(µ4), (3.6)

where φ1 can be modified, from (3.3), to

φ1 =
αµ√

π

∫ t

0

∇ · ub√
(t − T )

dT . (3.7)

We reiterate that the Boussinesq assumption, i.e. O(µ2) ∼ O(ε), and the assumption
that O(α) ∼ O(ε2) have been employed.

Similarly, the dynamic free-surface boundary condition, (2.19), can be expressed in
terms of H and ub as

∂ub

∂t
+ εub · ∇ub +

1

ε
∇H − µ2

2
∇

[
∇ · ∂ub

∂t

]
= O(µ4). (3.8)

Equations (3.6) and (3.8) constitute the Boussinesq-type equations in terms of the
bottom velocity, ub, and the total depth, H , with the effects of a viscous bottom
boundary layer included.

Traditionally, Boussinesq equations are expressed in terms of the depth-averaged
horizontal velocity. By definition, the depth-averaged velocity is given as

u =
1

H

∫ εζ

−1

∇Φ dz = ub − µ2

6
H 2∇2ub + O(µ4). (3.9)

Substituting the above equation into to (3.6) and (3.8), we obtain

1

ε

∂H

∂t
+ ∇ · (H u) − α

µ
√

π

∫ t

0

∇ · u√
t − T

dT = O(µ4), (3.10)

∂u
∂t

+ εu · ∇u +
1

ε
∇H − µ2

3
∇∇ ·

(
∂u
∂t

)
= O(µ4). (3.11)

If the viscous effects are ignored, i.e. α → 0, (3.10) and (3.11) reduce to the conventional
Boussinesq equations. It is clear that the leading-order viscous effects are due to the
boundary layer displacement in the mass balance.

It is well known that the frequency–dispersion characteristics of the Boussinesq
equations, expressed in terms of the horizontal velocity evaluated at a certain elevation,
z = zα = −0.521, are better than those in terms of the bottom velocity and the depth-
averaged velocity (Nwogu 1993). (In other words, these Boussinesq equations can
be applied to deeper water or shorter wavelength.) Therefore, in the Appendix we
also present the Boussinesq equations in terms of the velocity evaluated at zα with
consideration of bottom boundary layer effects.

3.1. Bed shear stress

By definition, the shear stress in the boundary layer in dimensionless form is

τ =
∂ur

0

∂η
. (3.12)
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Therefore, from (2.15), the leading-order bed shear stress, at η = 0, can be expressed
as

τ b = − 1

2
√

π

∫ t

0

u√
(t − T )3

dT . (3.13)

It is clear that the bottom shear stress depends not only on the depth-averaged
horizontal velocity at the current time, but also on the horizontal velocity in the past.
The relative importance is weighted by the function (t − T )−3/2 for 0 < T < t .

3.2. One-dimensional cases

To illustrate that the present formulation recovers the existing theories on the viscous
damping of simple harmonic waves and solitary waves, we shall consider one-
dimensional problems in this section. Thus, the continuity and momentum equations
become

∂ζ

∂t
+

∂

∂x
[(1 + εζ )u] − α

µ

1√
π

∫ t

0

∂u

∂x

1√
t − T

dT = 0, (3.14)

∂u

∂t
+ εu

∂u

∂x
+

∂ζ

∂x
− µ2

3

∂3u

∂x2∂t
= 0. (3.15)

3.2.1. Viscous damping of linear progressive waves

For linear progressive waves, (3.14) and (3.15) can be further simplified to

∂ζ

∂t
+

∂u

∂x
− α

µ

1√
π

∫ t

0

∂u

∂x

1√
t − T

dT = 0, (3.16)

∂u

∂t
+

∂ζ

∂x
= 0. (3.17)

Introducing the moving coordinate

σ = x − t, ξ =

(
α

µ

)
t, (3.18)

into (3.16) and (3.17) and summing the resulting equations, we obtain

∂ζ

∂ξ
=

1

2
√

π

∫ t

0

∂ζ

∂x

1√
t − T

dT . (3.19)

Note that ζ = u has been used as a leading-order approximation. Because of the
viscous damping, the free-surface displacement can be represented as:

ζ = a(ξ )eiσ . (3.20)

Substituting the solution form, (3.20), into (3.16), we obtain

∂a

∂ξ
eiσ =

[
i

2
√

π

∫ ξ/(α/µ)

0

ei(x−T )

√
t − T

dT

]
a(ξ ). (3.21)

Since the parameter α/µ is small, the upper limit of the above integral is essentially
infinity. Thus, with a simple substitution of ψ = t − T , the right-hand side of (3.21)
can be integrated analytically in terms of the Fresnel integrals as follows:

R.H.S. of (3.21) =

[
i

2
√

π
eiσ

∫ ∞

0

eiψ

√
ψ

dψ

]
a(ξ ) = a(ξ ) 1

2
eiσ e−iπ/4.
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Substituting the above equation back into (3.21), and introducing

a = a0e
iβξ , β = βr + iβi, (3.22)

where βi denotes the damping rate, we find

βr = βi =
1

2
√

2
(3.23)

which is exactly the same as the result obtained by Mei & Liu (1973) (see also Mei
1983).

3.2.2. Viscous damping of solitary waves

A similar analysis can be carried out for calculating the viscous damping of solitary
waves. Following the approach outlined in the previous section, we can combine (3.14)
and (3.15) in the moving frame, σ = x − t , as

∂ζ

∂ξ
+

3

2
ζ

∂ζ

∂σ
+

1

6

µ2

ε

∂3ζ

∂σ 3
=

α

µε

1

2
√

π

∫ t

0

∂ζ

∂x

1√
t − T

dT , (3.24)

in which the slow time variable is defined as ξ = εt . Without the damping effect, i.e.
α → 0, the solitary wave solution can be written as

ζ = a(ξ )sech2

[√
3a

2

(
σ − a

2
ξ

)]
. (3.25)

Thus, with the viscous damping, we introduce the perturbation solution as follows:

ζ = ζ0(ρ, ξ ) + δζ1(ρ, ξ ) + · · ·, (3.26)

where

ρ = σ − 1

2δ

∫ ξ

a(ξ ′) dξ ′, ξ = δξ, δ =
α

µε
. (3.27)

Substituting of (3.26) into (3.24), and collecting terms at the same order, we obtain
the following equations for the first two orders in δ:

L0ζ0 =
∂

∂ρ

[
−a

2
+

3

4
ζ0 +

1

6

µ2

ε

∂2

∂ρ2

]
ζ0 = 0, (3.28)

L1ζ1 =
∂

∂ρ

[
−a

2
+

3

2
ζ0 +

1

6

µ2

ε

∂2

∂ρ2

]
ζ1 =

1

2
√

π

∫ t

0

∂ζ0

∂x

1√
t − T

dT − ∂ζ0

∂ξ
, (3.29)

where L0 and L1 are adjoint operators of each other (Ott & Sudan 1970), i.e.∫ ∞

−∞
(ζ0L1ζ1 − ζ1L0ζ0) dρ = 0. (3.30)

Clearly the solution for the leading-order equation is just the solitary wave solution,

ζ0 = a(ξ )sech2

[√
3a

2
ρ

]
. (3.31)

Equation (3.30) provides a solvability condition for ζ1:∫ ∞

−∞
ζ0

(
1

2
√

π

∫ t

0

∂ζ0

∂x

1√
t − T

dT − ∂ζ0

∂ξ

)
dρ = 0. (3.32)
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The items in the integrand of the above integral can be expressed explicitly as

−∂ζ0

∂ξ
= −da

dξ
sech2

(√
3a

2
ρ

)[
1 −

√
3a

2
ρtanh

(√
3a

2
ρ

)]
,

1

2
√

π

∫ t

0

∂ζ0

∂x

1√
t − T

dT = −
√

3

π
a3/2

∫ ∞

0

1√
S

sech2

[√
3a

2
(ρ + S)

]
tanh

[√
3a

2
(ρ + S)

]
dS.

Thus, substituting the above equations and (3.31) into the solvability condition, (3.32),
we find

da

dξ
= −a5/4

√
2

√
3

π

∫ ∞

−∞
dr sech2(r)

∫ ∞

0

sech2(r + S2)tanh(r + S2) dS, (3.33)

which is exactly the same as the equation derived in Mei (1983). As mentioned in Mei,
the double integral on the right-hand side of (3.33) has been evaluated by Keulegan
(1948) and is approximately π−1. Hence the viscous damping rate for solitary wave
can be expressed as

1 − a−1/4 = −0.0836ξ. (3.34)

4. Concluding remarks
A set of two-dimensional depth-averaged continuity and momentum equations

including consideration of bottom boundary layer effects has been derived, (3.10) and
(3.11). The viscous effects appear in both continuity and momentum equations in
the form of convolution integrals. These equations can also be expressed in terms of
the horizontal velocity at any elevation (see the Appendix). Several restrictions are
imposed in the derivation. Some of them, such as the constant depth assumption, can
be removed relatively easily.

This work was supported by the National Science Foundation and the Spanish
MECyD through grants to the authors.

Appendix
In this Appendix, we present the Boussinesq type of depth-integrated continuity

and momentum equations, written in terms of the velocity evaluated at elevation
z = zα and the free-surface displacement. Defining

Φα = Φ(x, z = zα, t) (A 1)

as the velocity potential evaluated at the elevation z = zα , the velocity potential can
be expressed in terms of Φα as

Φ = Φα + (z − zα)φ1 − µ2

2

[(
z2 − z2

α

)
+ 2(z − zα)

]
∇2Φα +

µ4

24

[(
z4 − z4

α

)
+ 4

(
z3 − z3

α

)
+ 6

(
z2 − z2

α

)
+ 4(z − zα)

]
∇2∇2Φα + O(µ6). (A 2)

Following the procedures presented above, we find the following governing equations:

1

ε

∂H

∂t
+ ∇ · (H uα) +

µ2

2
∇ ·

[(
z2

α + 2zα + 2
3

)
∇(∇ · uα)

]
− 1

µ2
φ1 = O(µ4), (A 3)

∂uα

∂t
+ εuα · ∇uα +

1

ε
∇H + µ2

(
zα +

z2
α

2

)
∇

(
∇ · ∂uα

∂t

)
= O(µ4), (A 4)
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in which

φ1 =
αµ√

π

∫ t

0

∇ · uα√
(t − T )

dT . (A 5)

If the boundary-layer effects are ignored, (A 3)–(A 5) reduce to those originally derived
by Nwogu (1993). Moreover, the Boussinesq equation written in terms of the bottom
velocity, ub, (3.6) and (3.8), can be recovered from by applying zα = −1.
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